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Abstract 

We consider a lattice model of branched polymers in dilute solution in which the 
polymer is modelled as an animal, weakly embeddable in the (simple cubic) lattice. In 
order to model the effect on the thermodynamic properties of changing the temperature 
or the quality of the solvent, we include an energy associated with the number of near- 
neighbour contacts between pairs of vertices of the animals. We show that the configurational 
free energy of the animal is a continuous function of the temperature and derive rigorous 
upper and lower bounds on the temperature dependence of the free energy. Finally, we 
comment on similarities between these results and corresponding ones for a model in 
which the energy is associated with the cyclomatic index of the animal. 

1. In t roduct ion  

Self-avoiding walks on a regular lattice form a convenient model for the 
configurational properties of a linear polymer molecule in dilute solution in a good 
solvent. If near-neighbour interactions are weighted with a suitable Boltzmann factor, 
the (infinite) walk is thought to undergo a transition which models  the internal 
transition in a polymer brought about by the dominance of attractive forces between 
monomers at low temperatures. This transition has been studied theoretically for 
many years [1-7].  

Lattice animals serve as a corresponding model for the configurational properties 
of randomly branched polymers in dilute solution in a good solvent. As the solvent 
quality decreases, branched polymers are expected to become more compact and a 
collapse transition, analogous to that in linear polymers, is expected to occur. This 
transition has been examined using lattice animal models and a variety of 
approaches [8-11 ]. The models studied by these authors are formulated using different 
language, but can all be expressed in terms of a cycle fugacity as the driving force 
for collapse [ 12]. One can think of this as associating an energy with every (elementary) 
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cycle so that the overall energy is proportional to the cyclomatic index. If this energy 
is attractive, this could lead to a collapse phenomenon since animals with many 
cycles will be more compact than those with few cycles (see also the important 
related paper by Dhar [13], which proves that there is a collapse transition in a 
directed animal model). 

A model closer to that used for linear polymers is one in which interactions 
are introduced between pairs of  vertices of  the animal which are not incident on the 
same edge of  the animal. If these interactions are sufficiently strong, it seems that 
a collapse transition may occur. 

In a previous paper [14], we derived rigorous results about the form of the 
configurational free energy for a model with a cycle fugacity, but corresponding 
rigorous results for the near-neighbour interaction model are not available. In this 
paper, we supply some of these results; a more detailed analysis is in preparation. 
In section 2, we discuss the problem of lattice animals with no energy terms and 
recall some key rigorous results. In section 3, we define what we mean by a near- 
neighbour interaction model and prove some theorems that establish the continuity 
of  the configurational free energy. We derive bounds on the temperature dependence 
of the free energy, both for attractive and repulsive near-neighbour interactions. In 
section 4, we compare the near-neighbour interaction and cycle fugacity models and 
show that there are similarities in the behaviour of  the limiting free energy as the 
appropriate fugacity varies. Finally, in section 5, we point out a number of  open 
questions in this area. 

2. Latt ice animals 

We shall consider the d-dimensional hypercubic lattice, although we shall be 
primarily concerned with the simple cubic lattice in three dimensions (and occasionally 
the square lattice in two dimensions). We shall need to consider two kinds of  animals 
embeddable in these lattices. A bond animal is a connected sub-graph of  the lattice 
and a site animal is a connected section-graph of  the lattice. In a bond animal, two 
vertices which are neighbours on the lattice may or may not be incident on a common 
edge but, in a site animal, if two vertices of  the animal are neighbours on the lattice, 
then they are automatically_joined by an edge. Sometimes we say that a boncl animal 
is weakly embeddable in the lattice and that a site animal is strongly embeddable in 
the lattice. We ask for the number of bond animals with n sites where two animals 
are considered distinct if they cannot be superimposed by translation. Let this 
number be an. It is easy to see that, on the square lattice, al = 1, a 2 = 2, a 3 = 6 and 
a 4 = 23. Similarly, we can ask for the number (An) of  site animals with n sites. On 
the square lattice, A~ = 1, A 2 = 2, A 3 = 6 and A 4 = 19. 

An animal consists of a set of vertices (with integer coordinates in/R a) and we 
define the top vertex and bottom vertex using lexicographic ordering. We can concatenate 
an animal with n vertices with an animal with m vertices by translating such that the 
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top vertex of  one animal is one lattice space away from the bottom vertex of  the 
other. By adding an edge joining these two vertices, we obtain an animal with n + rn 
vertices, but not all animals with n + m vertices can be obtained in this way. This 
gives rise to the super-multiplicative inequality 

a n + ,~ > a n a m , (2.1) 

with a similar relation for A n. It can be shown [15, 16] that Un-1/" is bounded above 
and this, together with (2.1), is enough to show that 

sup n -1 logan = lim n -I logan = logA. 
n > 0  n ---~ oo 

(2.2) 

and, using similar arguments, that 

sup n - l l o g  An = lim n - l l ogAn  = logA. (2.3) 
n > 0  n ---) oo 

Since every site animal is a bond animal (i.e. An < an), it is clear that A < A and in 
fact, it can be shown that [16] 

A < )%. (2.4) 

Although the exact values of the "growth constants" 2, and A are not known, accurate 
numerical estimates are available [17, 18]. 

3. The near -ne ighbour  interaction model  

We write an(b ) for the number of distinct (up to translation) bond animals with 
n vertices and with b near-neighbour contacts, i.e. pairs of  vertices which are unit 
distance apart but which are not incident on a common edge. 

In order to investigate the thermodynamics of  this model, we shall be interested 
in the behaviour of  the partition function 

Zn (/~) = ~ an (b) exp(/~b) (3.1) 
b 

and of  

G(/3) = lira n -1 logZn(fl), (3.2) 
n - - ~  

which, apart from a change in sign, is a reduced limiting free energy per vertex. 
We first consider the maximum possible number ot" near-neighbour contacts 

bmax(n). The average valence of a vertex of  a tree is 2 - (2/n) so, since the coordination 
number of  the d-dimensional hypercube lattice is 2d, we have 
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bmax(n)<(2d-2+- n2 ) 2n = ( d - 1 ) n +  1. (3.3) 

A pair of animals can be concatenated by translating so that the top vertex of  
one is unit distance from the bottom vertex of  the other and adding an edge to join 
these two vertices. Because of the definitions of top and bottom vertices, this does 
not introduce new near-neighbour contacts, so that 

an, (bl)an2(b2) -< an, +n2(bl + b2 ). (3.4) 

Multiplying by exp[fl(b I + b2)] and summing over b 1 and b 2 gives 

Znl (fl)Zn2 (fl) < ( d -  1 )(nl + nz )(1 + o(1 ))Znl +.2 (fl), (3.5) 

and from (3.5) it is easy to show the existence of the limit 

lim n -1 logZn (fl) - G(fl). (3.6) 
n ..~ ,ao 

To prove that G(fl) is convex (and therefore continuous), it is sufficient to show that 

i [G(fll )+  G(fl2)] > G([fll + 32] /2) .  2 
(3.7) 

This follows immediately from 

Zn (ill)Zn (f12) = ~ an (bl) exp(fll by ) ~ an (b2) exp(fl2 b2 ) 
b l  b2 

> I ~b an(b)exp[(fll + fl2)b]2]l 2 

= + (3.8) 

on taking logarithms, dividing by n and letting n ~ oo. 
Next, we identify G(0). Since 

~.~an(b)=an, 
b 

clearly 

G(0) = lim n-llog~_~an(b)= l o g ~ .  
n --~ ,~  b 

(3.9) 

(3.10) 
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For real values of t ,  we have 

Zn (fl) = ,~,a~ (b) exp(flb) > an (0), (3.11) 
b 

but a,(0) = A, so that 

G(fl) > lim n -1 log an (0) = log A. (3.12) 
n ,-..~ oo 

Clearly, since Zn(fl) is non-decreasing, G(fl) < G(0) for fl < 0 but, at least for large 
negative t ,  we can derive a much stronger upper bound. We consider a bond animal 
with n vertices and b near-neighbour contacts. If we add the b edges needed to reduce 
the number of near-neighbour contacts to zero, we obtain a site animal with n 
vertices. The resulting site animal could have many different bond animals as precursors, 
and we can bound the number of precursors by noticing that we could remove b edges 
from the site animal in at most ( ~ )  ways. Hence, 

so that 

Z,(fl) < a, (0)(1 + exp/3) d", 

and hence 

G(fl) < logA + dlog(1 + exp fl). 

Now, letting fl ---) _oo in (3.15), together with (3.12), gives 

lim G(fl)= logA. 
j ~ - - ~  t o o  

We now derive bounds for fl > 0. Since 

Zn (fl) < exp(flbmax) ,~, a, (b), 
b 

we have 

GCfl) < ( d -  l i f t +  log Z 

and 

lim supfl-l  G(fl) < ( d -  1). 

Clearly, G(fl) > log ~ for all positive fl and, in addition, 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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Zn (/3) > an (bmax) exp(/3bmax). (3.20) 

We can obtain a lower bound on bma x by considering Hamiltonian walks which, together 
with (3.3), establishes that bma x = ( d -  1)n + o(n). This, and the fact that an(bmax) 
is non-negative, establish that 

l im G(/3)  _ ( d -  1). ( 3 . 2 1 )  
t~--, 00 13 

In two dimensions we can do a little better, since an(bmax) is bounded below by the 
number of  (undirected) Hamiltonian walks on the square lattice, which is in turn 
bounded below by the corresponding number on the Manhattan lattice. Using Kasteleyn's 
exact result [19] for these walks, we obtain 

G(fl) > ~ + ( d -  1)fl, (3.22) 
;Z 

for all real /3, where G is Catalan's constant G = 0.9159 . . . .  In three dimensions, 
we can stack up a set of Hamiltonian circuits on copies of the square lattice with 
Manhattan orientations, and suitably connect these layers to form a compact walk on 
the simple cubic lattice. The net effect of this is that (3.22) is also valid in three 
dimensions. This argument can then be repeated in higher dimensions so that (3.22) 
is valid for all d. 

4. Compar ison  of models  

In this section, we compare the general form of the results for two models of  
the thermodynamics of branched polymers in dilute solution, especially as a function 
of temperature or solvent quality. In order to look at phenomena such as collapse, 
the model needs to incorporate a driving force which will reduce the dimensions of  
the branched polymer as the temperature is increased. In the model discussed in 
section 3, this is accomplished by incorporating an attractive interaction between 
non-bonded near-neighbour pairs of vertices. An alternative idea [11, 14] is to favour 
animals with many cycles at low temperature. This is accomplished by considering 
the number a°(c) of bond animals with n vertices and c independent cycles, and examining 
the behaviour of the partition function 

and 

Q~ (fl) = ~.,a°(c) exp(flc) (4.1) 
¢ 

F(fl) = lim n -1 logQ~(f l ) .  (4 .2 )  
n - - C o o  

We have analysed this model in some detail elsewhere [14] and we summarize some 
of our results here in order to make a comparison with the work described in 
section 3. Some key results from [14] are: 
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(a) F(13) is a convex, continuous, strictly increasing function; 

(b) F(O) = log 2~; 

(c) for fl < 0 

log Z0 < F(13) < min[log X, log ~o + ( d -  1) log(1 + exp 13)], (4.3) 

where ~0 is the growth constant for bond trees, known to be strictly less than 
X [14, 16]; 

(d) limp__,_~ F(13) = log ~0; 

(e) for 13 __ 0 

max[log 51,, ( d -  1)13] _< F(f l )  < log X + ( d -  1)fl; (4.4) 

(f) l i m , 6 ~  F(13)/13 = d -  1. 

It is clear that there are strong similarities between the two models. The 
primary difference is in fact the lower bound for 13 _< 0 and the corresponding value 
of the 13--4-,,~ limit. One would therefore expect both models to be equally useful 
in describing the general thermodynamic properties of dilute solutions of  branched 
polymers. 

5. Some open quest ions 

In this final section, we point out a number of important questions which 
deserve attention. There can be little doubt that the most important of  these is the 
existence of a collapse transition. That is, is G(fl)  an analytic function of fl? If not, 
can we say anything about the nature and location of the singular point(s)? This 
seems to be a very difficult question and we have no results which bear on it. Of 
course, we expect that G(fl)  will be analytic for fl < 0 and that there will be just one 
singular point for fl > 0. 

For ,6 _< 0, our results seem reasonably satisfactory. However, for 13 > 0 a number 
of interesting questions remain. We know that G(13) is asymptotic to a line with 
gradient d -  1. Can we establish the value of  the intercept of this line? If not, can 
we at least improve our current upper and lower bounds on this intercept? This is 
equivalent to asking for the limiting entropy of the compact phase. We have shown 
that the compact  phase in the near-neighbour interaction model has non-zero limiting 
entropy. This is in sharp contrast with the cycles model where, by extending the 
arguments of [14], w e c a n  show that the limiting entropy in the compact  phase is 
zero. 
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